

Lessons from QoSMOS on TVWS

Michael Fitch

A shift away from binary licensed / unlicensed towards smart sharing

TVWS ingredients:

Adequate customer volumes
For viable business

Mature open standards to ensure multi-national market and vendor choice

Effective spectrum management

To mitigate interference and ensure fairness among TVWS users

suitable signal powers

Large vendors interested for workable costs and choice

Ingredients are inter-dependent

Protection criteria are cautious and progressive

Involve stakeholders that will be affected

Use a two-stage spectrum manager augmented with sensing

Have a PHY layer that enables sharing

- Filter Bank Multiple-Carrier (FBMC) emerged as a strong contender and has as been developed and prototyped in the context of the TVWS
- FBMC is here benchmarked against OFDM (incl. 3GPP LTE PHY)

FBMC vs OFDM with 480 active carriers of LTE

Fragmented spectrum usage with FBMC

One-slide summary of what we have achieved...

- Use-cases defined and business modelling tools developed
 - We have looked at the most viable markets and sensitivities
 - Allows more efficient spectrum sharing, through protocols and less wastage
- Radio environment modelling and awareness
 - Performance limits are now known for a wide range of sensing methods
- Spectrum management architecture
 - System solution for QoS and mobility, including a prototype database -> ETSI RRS, IETF PAWS
- Physical layer
 - Allows more efficient spectrum sharing, through reduction in interference -> IEEE P.1900-7

Further work needed (what would we like to do ?)

- Fairness between WSD spectrum allocations
 - Co-operation between databases
 - IETF PAWs working on protocols but not this issue
- Development of better tools for WSD transmit power calculations
 - Tools to aid installation
 - Aggregate interference
- Towards M2M with TVWS
 - Business case evaluation
 - Coping with increase of scale of connections
 - Increasing distributed nature of spectrum manager
 - Integration with fixed network and taking advantage of virtualisation
 - OSS development for scale of connections and lowering barriers to

Thanks for listening

http://www.ict-qosmos.eu

Spectrum management – a possible approach from FP7 QoSMOS project www.ict-qosmos.eu

Fairness between WSD devices is an ongoing research problem

TVWS availability modelling

Allowed WSD power Reference geometry Protection margin (from measurements on TVs) Pixels with DTT strengths (\dot{x} , σ)

from our estimates. Population per pixel included.

Output from BT implementation of model (all TV channels protected -80dBm)

Of the three steps, it is the Reference Geometry that has the most potential for improving the maximum allowable power

Reference geometry

This geometry is applied as default in absence of planning, which is valid in only a tiny minority of cases. It is the approach used when spectrum is totally unplanned.

Trials run by BT have shown the reference geometry case to be overly conservative – and are running today at 10W transmit powers with no interference caused

There is a need for expert tools to assist deployment of WSD, especially base-stations, which will lead to the transmit powers we need in most situations

